
Markerless Motion Tracking
Kelly Byron, Linh Pham, Joshua Situka

Mentors: Ken Kopecky M.S., Song Zhang, Ph.D.
Graduate Program of Human Computer Interaction

Virtual Reality Applications Center
Iowa State University

Abstract

Marker-based motion tracking is currently a popular
method being used in both feature films and video games
to create realistic movements and special effects.
However, this technique requires physical markers to be
placed on a human. Multiple cameras track the markers,
which often cannot be done in real-time. Our work tracks
a human hand without using any physical markers. This
is done by using a skin detection algorithm to recognize
the hand, a curve approximation algorithm to smooth the
outline of the fingers, and trigonometric analysis to
uniquely identify each finger. The user’s hand is able to
control a 3D hand model that copies its movements on the
computer screen. This system uses a single camera, the
ZCam developed by 3DV Systems. The ZCam is able to
acquire the depth information as well as the 2D
information in real-time. We realized finger tracking and
mapped its motion to virtual 3D hand model in real time,
albeit the motion was not realistically because only a few
points are track for this study. We also created hand
outline and found that more control could be realized the
rotation around z axis could be up to 170 degrees.
Because real hand motion was tracked, it can be used for
numerous human computer interaction (HCI)
applications. For example, we successfully applied finger
tracking recognition to interact with 3-D water naturally
and easily.

Introduction

Marker-based motion tracking is a system that uses
physical markers that are placed on a human. Typically,
multiple cameras are used to capture the movement of the
markers, which is later used by a computer to generate a
3D model with the same movement as the body. This
method has become commonly used in both feature films
and video games to aid in creating realistic special effects.
Recently, it has been used in several popular films such as
The Polar Express, Beowulf, and Benjamin Button. It is
also often used in video games to animate athletes and
other characters in the game. As popular as this
technology has become, it still has many disadvantages.
The cameras only follow the motion of the markers,
therefore the rest of the animation still needs to be done
by a computer with enormous manual inputs, which can
be a very time consuming process. This existing system
also requires a large number of cameras and equipment,

which makes it very expensive. Finally, many marker-
based systems do not allow real time visualizing of the
data, and since real life performance does not always
translate to the 3D model as expected, this can result in
problems that require an entire scene to be re-captured.
As a solution to these problems, methods of markerless
motion tracking have started to be developed. This would
eliminate the need for physical markers as well as solve
many of the other issues with marker-based tracking.
However, few of these algorithms are able to accomplish
finger detection since they are often limited in 3D motion.

PPrreevviioouuss WWoorrkk

Over the past few years, markerless motion tracking
technologies have advanced drastically. Cheung et al
developed a markerless motion tracking system by using
shapes from silhouette images (Cheung et al. 2005). This
technology uses human kinematic models that are used to
track the motion of the person. However, their system
does not work in real time. Near real-time hand
recognition with an IR time-of-flight camera has been
accomplished by Breuer et al. (2007). However, this
system cannot track different movements of each
individual finger. Segen and Kumar (1999) used a light
source, a camera, and shadows, to achieve real time
motion tracking of the hand. They were also able to
recognize gestures with two fingers such as point, click,
etc. However, shadow variations caused consistency
issues due to the range of distance of the hand from the
background. Soutschek et al. (2008) also tracked hand
gestures for a user interface, which they did by using a
single time-of-flight camera. The time-of-flight camera
provides 3D image data, giving the depth as well as the
color information at each point. This provided more
reliable depth information, but only used recognized
specific gestures with markerless tracking. A color-based
method for tracking hand gestures was developed by
Kang et al. (2008). They used a color detection algorithm
to locate the hand and contour analysis to find the
fingertip. This method is limited because it does not
allow all five fingers to be located and differentiated.
Holub and Nekolny (2009) developed a method
combining skin and depth detection of the hand for
American Sign Language recognition. However, their
algorithm does not recognize non-trained finger tracking
movement.

In this research, we are using a time-of
achieve real-time markerless motion tracking of a human
hand, as well as each individual finger’s motions.
motion tracking of markers on finger tips
train the 3D hand model. The markers are later removed
when the mathematical algorithm was developed to
separate finger tips from a blob of skin color.
calibration of color had to be made to distinguish markers
and later skin color for increase robustness under different
lighting conditions. Eventually, the markerless algorithm
of tracking the hand was accomplished by using skin
detection and a fast connected components algorithm to
extract the hand from the background and remove
background noise. A curve approximation algorithm is
used to smooth the outline of the finger contours and
trigonometric analysis is used to uniquely identify each
finger. Finally the tracked markerless
transferred to drive the 3-D hand model.

Methods

The goal of this project is to track 3D motion of a real
hand to drive the virtual hand generated by a computer in
real-time. Instead of using a physical device,
haptical device, we use a computer vision technology and
an imaging device to detect the hand motion and interact
with the computer. The time-of-flight camera used was
the ZCam and is show in Figure 1, and its specifications
are shown in Table 1.

Figure: 1 ZCam

Resolution 320x240 at 30fps

160x120 at 60fps

Dimensions 85(W)x90(H)x60(D)mm

Depth Data Rate 30fps

Operating Range 0.5-2.5m

RGB Sensor format 1.3M

Min. Res Depth 2 cm, depends on range
window.

Table 1: Specifications of ZCam

of-flight camera to
time markerless motion tracking of a human

inger’s motions. First,
on finger tips was used to

The markers are later removed
when the mathematical algorithm was developed to
separate finger tips from a blob of skin color. Next,
calibration of color had to be made to distinguish markers
and later skin color for increase robustness under different

the markerless algorithm
accomplished by using skin

ected components algorithm to
extract the hand from the background and remove
background noise. A curve approximation algorithm is
used to smooth the outline of the finger contours and
trigonometric analysis is used to uniquely identify each

markerless motion is then
.

The goal of this project is to track 3D motion of a real
hand to drive the virtual hand generated by a computer in

time. Instead of using a physical device, such as a
haptical device, we use a computer vision technology and

to detect the hand motion and interact
flight camera used was

, and its specifications

320x240 at 30fps

160x120 at 60fps

85(W)x90(H)x60(D)mm

2 cm, depends on range

ZCam

The ZCam works by sending IR pulses to its field of
view, creating active illumination
from the reflected light by
2 illustrates an example on how the ZCam attains its
depth information about the scene.

Figure 2: Light being projected and reflected from
camera (www.3dvsystems.com.il

There is a fast shutter which truncates returning light, in
which the imaging sensor integrates more light from
closer objects. It produces a black and white v
which grey saturation represents the depth (G.J. Iddan
Yahav 2000). The closer the object is to the camera the
lighter the grey. In Figure
is in the bottom left corner of the
noticeably lighter than the head behind it.

Figure: 3 ZCam output

SSkkiinn aanndd MMaarrkkeerr DDeetteecc

First we used markers on the fingers to track their motion
and train a 3D model, before
to a markerless motion tracking
train the model first with markers to distinguish finger
tips then later take off the markers and use a mathematical
algorithm developed to distinguish fingertips from skin
control the model. We capture the depth as well as the
color information of a moving hand with
OpenCV and skin detection techniques
the markers attached to the finger tips in real time.
Disparate color markers are attached ont
finger tips and palm. The markers that
of a hand are used to identify the
Holub et al. (2009) skin detection algo
language was incorporated to detect the marker and skin
position from the 2D video images
to get a color spectrum for each
used in developing the 3D model of the hand.

The ZCam works by sending IR pulses to its field of
, creating active illumination to get depth information

by the objects in the field. Figure
illustrates an example on how the ZCam attains its

the scene.

Light being projected and reflected from
www.3dvsystems.com.il)

There is a fast shutter which truncates returning light, in
which the imaging sensor integrates more light from
closer objects. It produces a black and white video, in

represents the depth (G.J. Iddan and
The closer the object is to the camera the

Figure 3 below the depth information
is in the bottom left corner of the four views. The hand is

lighter than the head behind it.

3 ZCam output

ccttiioonn aanndd CCaalliibbrraattiioonn

First we used markers on the fingers to track their motion
before we transferred the 3D model

to a markerless motion tracking algorithm. It was easier to
the model first with markers to distinguish finger

tips then later take off the markers and use a mathematical
algorithm developed to distinguish fingertips from skin to

capture the depth as well as the
a moving hand with the ZCam.

skin detection techniques are used to find
the markers attached to the finger tips in real time.
Disparate color markers are attached onto the hand at the

palm. The markers that follow the motion
used to identify the 3D motion of the points.

skin detection algorithm for sign
corporated to detect the marker and skin

from the 2D video images. We use this algorithm
to get a color spectrum for each marker color that was
used in developing the 3D model of the hand. The

spectrum is analyzed to determine if the pixel in a video
image corresponds to a predetermined color we are
attempting to find. In OpenCV, we represented a pixel
color in the blue, green, and red (BGR) format,
corresponding to blue, green, and red respectively. For
processing each pixel in an image frame, a proportion of
the colors were used (Holub et al 2009). Each color can
have up to 255 in saturation value. The values were
normalized to accommodate for different light conditions
by taking the sum of the BGR intensity values for each
pixel. This produced a new scale from 0-1 for B, G, R, but
since it is a proportion, analysis of only two colors on a
plot is necessary. An example of the calculation is below.

Example- For Red Marker Pigment

Color Pigment Value

Blue Value - 100

Green Value- 100

Red Value - 250

Blue + Green + Red = 450

Normalized Ratio in Color Spectrum

Blue Ratio - 100/450 = .222

Green Ratio - 100/450 = .222

Red Ratio - 250/450 = .556

Red and green were chosen arbitrarily, but any
combination of two of blue, green, and red would produce
the similar detection results, because the third color’s
ratio would be implied from the proportion. Figure 4
represents the red marker spectrum normalized in Matlab.

Figure 4: Red marker spectrum

Therefore, if the pixel’s color properties fall in the red
range from .58 to .62 and green range from .195 to .225 it

will be determined to be red. Figure 5 demonstrates the
normalized pixel color saturation for skin.

(a) Real skin image

(b) Color sepectrum

Figure 5: Skin with Matlab spectrum

As can be seen by Figure 5 skin pigments have a broader
spectrum than red. We used six colors which created
overlap issues when color spectrums were similar. To
achieve better skin detection, a color calibration is
required. We developed the calibration algorithm for the
ZCam to better distinguish the colors from one another.
Skin is considered its own special color and calibration
helped separate the color from other noise in the
environment. Also, since the accuracy of the Holub et al.
(2009) method was not consistent if the light changes in a
room condition, a calibration was needed to improve its
performance. During the calibration, we converted the
image from BGR color-space to the Hue Saturation and
Value (HSV) color-space. We found that increasing raw
saturation (S) value a little bit will increase the
performance of the calibration, which was interesting. We
believe that it is caused by the image sensor used in
ZCam is not very good. After adjusting the S value, the
color was converted to BGR color space for descriptive
statistical analysis. We used descriptive statistics to
analyze the pigment data for color calibration. Although
the ZCam software comes with its own calibration, it does
not specifically serve the purpose for us to distinguish
colors. The calibration is based on finding outliers from a
five number summary illustrated in Figure 6.

FFiigguurree:: 66 BBooxx PPlloott

This method is used because of its flexibility with a video
sequence. We took the frame and color that the user
wanted to calibrate and processed the frame with the user
holding the indicated color or skin part to the camera. The
pigments outside of the main color shown to the camera
were ignored. This was accomplished by sorting
pixels to find the median, upper quartile (
and the lower quartile (LQ lower 25%).
quartile range (IQR) was found by subtracting
from the lower quartile. The IQR was
“stretch” and added to the upper quartile range and
subtracted by the lower quartile range to
whiskers. Values outside those bounds were outliers
will not be considered in forming the detection range for
each color. The “stretch” is traditionally 1.5.

This was proved to be an improvement over the Holub et
al. (2009) method because of the flexibility in changing
the stretch to accommodate different lighting conditions.

MMaarrkkeerrlleessss FFiinnggeerr TTrraacckkiinngg AAllggoorrii

To implement marker-less motion tracking of a hand, we
had to apply image processing methods to improve the
quality of the image and mathematical algorithms to find
the finger tips. We follow the following steps to find the
finger tip motion:

Step 1: First an image was obtained through the camera,
cvThreshold() was used with a depth image to eliminate
the background. Because we assume that the hand is
separate from the body in depth, the depth information
with OpenCV segmentation algorithm separates
from the result of the body, which make
tracking easier.

This method is used because of its flexibility with a video
We took the frame and color that the user

processed the frame with the user
skin part to the camera. The

pigments outside of the main color shown to the camera
were ignored. This was accomplished by sorting the
pixels to find the median, upper quartile (UQ top 75%),

25%). The Inter-
quartile range (IQR) was found by subtracting the upper

 multiplied by the
“stretch” and added to the upper quartile range and
subtracted by the lower quartile range to get the bounds or

Values outside those bounds were outliers, and
considered in forming the detection range for

each color. The “stretch” is traditionally 1.5.

proved to be an improvement over the Holub et
because of the flexibility in changing

lighting conditions.

iitthhmm

less motion tracking of a hand, we
had to apply image processing methods to improve the
quality of the image and mathematical algorithms to find

We follow the following steps to find the

an image was obtained through the camera,
cvThreshold() was used with a depth image to eliminate

Because we assume that the hand is
he depth information
m separates the hand

the result of the body, which makes future hand

Step 2: Skin tracking was used to grab the hand
grabbed an image, using the values calibrated earlier.
Then we applied the "Fast Connected Components" filter.
This algorithm goes through an image, and associates
"blobs" based on color. For example, it would be able to
differentiate between a blue blob and a red blob, isolating
the two. The purpose of this filter was to get a better
image of the hand, distinguishi
noises.

Step 3: We compared the skin image to the depth image
using cvAnd(), we were able to isolate the hand.
applied a Gaussian smoothing filter (
further filter out the noise. Figure 7 shows the result
before and after applying Gaussian filter. It caleraly
shows the improvement of the using the filter

Figure 7: Before and After Gaussian Blur

 At this point we had a clean image of the hand. However,
when we took the contour of
cvFindContours() to find the contour of the hand and the
fingers. Finger tip detection method relied on the
curvature properties of the

Step 4: In order to simplify the problem, we used
Douglas Peuker Approximation with the function
cvApproxPoly() to reduce t
contour. This function works by picking the farthest
vertices from each other to form a line. The next point
picked is the point farthest from the line, while staying
within the bounds of the precision parameter of the
function. The third point picked is the point farthest from
this new line formed. This process is repeated until there
are no more points that can be picked, or there are no
points that are within the bounds of the precision
parameter. The end result was a contour c
around 10 points, as opposed

Figure 8: Douglas Peuker Approximation

Skin tracking was used to grab the hand. We
grabbed an image, using the values calibrated earlier.
Then we applied the "Fast Connected Components" filter.

his algorithm goes through an image, and associates
"blobs" based on color. For example, it would be able to
differentiate between a blue blob and a red blob, isolating
the two. The purpose of this filter was to get a better
image of the hand, distinguishing it from background

e compared the skin image to the depth image
using cvAnd(), we were able to isolate the hand. We

smoothing filter (cvSmooth()) to
further filter out the noise. Figure 7 shows the result

after applying Gaussian filter. It caleraly
shows the improvement of the using the filter.

Figure 7: Before and After Gaussian Blur

At this point we had a clean image of the hand. However,
when we took the contour of our image with

o find the contour of the hand and the
detection method relied on the

properties of the contours.

In order to simplify the problem, we used the
Douglas Peuker Approximation with the function
cvApproxPoly() to reduce the amount of points in our

This function works by picking the farthest
vertices from each other to form a line. The next point
picked is the point farthest from the line, while staying
within the bounds of the precision parameter of the

point picked is the point farthest from
this new line formed. This process is repeated until there
are no more points that can be picked, or there are no
points that are within the bounds of the precision

The end result was a contour consisting of
around 10 points, as opposed to 200 in Figure 8.

Douglas Peuker Approximation

Step 5: To detect fingers, the function atan2() was used
to subtract angles between 2 adjacent points. If the
difference was positive, it was a finger. An example is
shown in figure 9.

Figure 9: Trigonometry

Step 6: However, to distinguish the fingers from each
other, we needed to find the palm. This was done by
taking all the points except the fingers, and averaging
them. This gave us the center of the hand. By comparing
where each finger was relative to the palm, each finger
could be differentiated from each other, resulting in
marker-less motion tracking of a hand.

Step 7: To increase realism and detection robustness, the
time series of each point is stored. Then the previous four
points from past finger movement are averaged.
Therefore, if in the next frame the finger tip is not
detected there will still be a predicted location based on
the other previous points. Also, this makes the movement
from of the finger tip from one point to the next much
smoother.

33DD HHaanndd MMooddeell

We created the 3D hand model that is controlled by the
human hand using OpenGL. It is made out of basic
spheres and cylinders in OpenGL. These shapes are then
rotated and translated based on the position of the human
hand in front of the camera. The previous and current
positions of each finger on the human hand in the x, y,
and z directions are kept track of in the code. This
information is then used to find the difference between
the current and previous position in each direction. The
arctangent of the x and y differences for each finger is
then used to control how much each finger rotates in the x
direction. The difference in the y direction in each finger
is also used to translate each joint when a finger bends.
The difference in the z direction for each finger is used to
control the rotation of how far each finger bends forward
or back. The result is illustrated in Figure 10.

Figure 10: 3D Model

The differences in current and previous position are also
used to translate the joint of each finger when it bends.
For the mark on the center of the palm of the hand, the
differences in the x, y, and z directions are used to control
where the hand model should be in the display window
and how it is moving within the display window.
Although we were able to move the fingers, the bending
was inconsistent and unstable with our hand. The finger
detection algorithm we used only produced somewhat
natural results in combination with mapping of the virtual
hand model. One of the problems was it is only able to
find a fingertip if the approximation had a sharp corner in
the contour. If the situation occurred where a finger was
put down, it would not be able to track it anymore. If we
could have built a better mathematical model to
compensate for this limitation, it would have produced
better results.

We created a second hand model outline that had a more
control stability. Also, that hand model was able to rotate.
This model was created by taking using OpenGL 3D
shapes to follow the outline of the hand. The model is
illustrated in Figure 11 and 12.

Figure 11: Hand model outline

Figure 12: Hand model outline motion tracking two
fingers

The response on the hand model outline was much more
accurate, which is what is demonstrated with its
reaction to change to two fingers.

AApppplliiccaattiioonnss

Because we were able to track finger tips without
markers, we applied this concept to manipulate 3
geometries, such as water. With this water model,
function would be called if we wanted the water to move.
This function would be called if one of the fingertips was
at a certain depth, and the water would appear to be
touched at the appropriate point as shown in F
and 12.

Figure 11: Fingers not touching water

Figure 12: Hand model outline motion tracking two

model outline was much more
accurate, which is what is demonstrated with its fluid

Because we were able to track finger tips without
markers, we applied this concept to manipulate 3-D

With this water model, a
function would be called if we wanted the water to move.
This function would be called if one of the fingertips was
at a certain depth, and the water would appear to be

appropriate point as shown in Figure 11

Figure 11: Fingers not touching water

Figure 12: Fingers Touching Water

Results

For Finger Tracking, we were successfully able to
differentiate fingers from each other
algorithm only follows a limited range of motion
fingers going off-screen and full rotation of the fingers
into a fist was not accomplished to a point of realism.
Crossing the fingers also created an inaccurate motion
tracking. Having the fingers
in between, made it hard for
fingers. The model best followed the hand with the palm
facing the camera. Each finger was able to bend but not
consistently to get accurate measurement.
finger tips out of view of camera
model was lost. The second hand model masks lost
control of finger tips
Appearance is more fluid than the first model
the ability to move in 3D space accurately.
hand model could make up to a 170
around the z-axis (If z-axis defined as going
ground to the ceiling). The depth response of the ZCam
was a little unstable. The response can sometimes differ
from day to the next even in the same location and
daylight time. Calibration was accurat
20cm. If color was held to close to camera distortion from
infrared feedback can give inaccurate results. The project
focus was on motion tracking, therefore, the
model was very simplistic in nature using 29 polygons to
make analysis of successful tracking easier, decreasing
realism of finger motion to the eye. The motion tracking
of the hand worked best between .5
the camera.

Conclusion

Even with these limitations
improvement of finger tracking in real time
instability made off screen tracking of fingers difficult but
manageable with proper filtering techniques. This simple

Fingers Touching Water

we were successfully able to
from each other, although the current

algorithm only follows a limited range of motion. The
screen and full rotation of the fingers

into a fist was not accomplished to a point of realism.
Crossing the fingers also created an inaccurate motion
tracking. Having the fingers close together with no space

it hard for the model to distinguish
best followed the hand with the palm
Each finger was able to bend but not

consistently to get accurate measurement. However, once
of camera then control of the

The second hand model masks lost
 because of the 3D shapes.

Appearance is more fluid than the first model because of
the ability to move in 3D space accurately. The second

could make up to a 170 degree rotation turn
axis defined as going from the

The depth response of the ZCam
little unstable. The response can sometimes differ

even in the same location and
daylight time. Calibration was accurate between 15cm-
20cm. If color was held to close to camera distortion from
infrared feedback can give inaccurate results. The project
focus was on motion tracking, therefore, the first 3D
model was very simplistic in nature using 29 polygons to

s of successful tracking easier, decreasing
realism of finger motion to the eye. The motion tracking
of the hand worked best between .5-1.5 meters away from

limitations, our method is still an
improvement of finger tracking in real time. The depth

screen tracking of fingers difficult but
manageable with proper filtering techniques. This simple

3D model created in this research could be improved to
make a more realistic hand. In the future a mathematical
solution can be developed to account for the full rotation
of the hand. Furthermore, gesture recognition could be
significantly increased with this technology. Because this
technology is noninvasive, video game and movie
applications can possibly used this method for interactive
entertainment.

AAcckknnoowwlleeddggeemmeennttss

This research was performed at Iowa State University as
part of a research internship sponsored by the Program for
Women in Science and Engineering and the Department
of Human Computer Interaction during Summer 2009.

References

[1] P. Breuer, C. Eckes, and S. Müller, “Hand gesture
recognition with a novel IR time-of-flight range camera—
a pilot study.” A. Gagalowicz and W. Philips (Eds.):
Lecture Notes in Computer Science, Springer: Berlin, vol.
4418, pp 247-260, 2007.

[2] K. Cheung, S. Baker, and T. Kanade, “Shape-from-
silhouette across time part I: Theory and algorithms.”
International Journal on Computer Vision, vol. 62 issue
3, pp 221–247, 2005.

 [3] D. H. Douglas and T. K. Peucker, “Algorithms for the
reduction of the number of points required to represent a
line or its caricature.” The Canadian Cartographer, vol.
10 issue 2, pp 112-122, December 1973.

[4] J. Holub, B. Nekolny, and M. V. Waardhuizen,
“Application for Recognition of American Sign Language
using the ZCam.” Department of Human Computer
Interaction Technical Paper, Iowa State University, 2009.

[5]G.J. Iddan & G. Yahav “3D Imaging in the studio”
3DV Systems Ltd. www.3dvsystems.com.il, 2000.

[6] S. K. Kang, M. Y. Nam, and P. K. Rhee, “Color Based
Hand and Finger Detection Technology for User
Interaction.” International Conference on Convergence
and Hybrid Information Technology, pp 229-236, August
2008.

 [7] J. Segen and S. Kumar, “Shadow gestures: 3D hand
pose estimation using a single camera.” Proceedings of
IEEE Conference on Computer Vision and Pattern s, vol.
1, pp 479-485, 1999.

[8] S. Soutschek, J. Penne, J. Hornegger, and J.
Kornhuber, “3-D Gesture-Based Scene Navigation in

Medical Imaging Application Using Time-Of-Flight
Cameras.” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, pp
1-6, June 2008.

